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J. Phys. A :  Math. Gen. 22 (1989) 5259-5270. Printed in the UK 

Lattice models of branched polymers: effects of geometrical 
constraints 

C E Soterost and S G Whittingtonz 
t Department of Mathematics. University of Saskatchewan, Sashatoon. Saskatchewan, 
Canada S7N OW0 
$ Department of Chemistrj. University of Toronto. Toronto. Ontario, Canada M5S 1Al 

Receibed 17 Ma) 1989 

Abstract. We consider uniform brushes on subsets of the square and simple cubic lattices. 
We show that. in a slab geometry in three dimensions, the connective constant of a brush is 
identical to that of a walk in that slab. In two dimensions. in a slit geometry. the connective 
constant of a brush is strictly less than that of a walk. We also consider the intermediate 
case of a rectangular prism and show that the connective constant of a brush is strictly less 
than that of a walk; similar results are presented for combs. stars and polygons. 

I .  Introduction 

Two areas of recent interest have been the properties of uniform branched polymers 
(Miyake and Freed 1983, Vlahos and Kosmas 1984, Duplantier 1986, Lipson et al 
1987) and the effect of geometrical constraints on the properties of self-avoiding 
walks (Wall and Klein 1979, Klein 1980, Hammersley and Whittington 1985, Chayes 
and Chayes 1986), polygons (Klein 1980, Hammersley and Whittington 1985, Soteros 
and Whittington 1988) and uniform branched polymers (Duplantier and Saleur 1986, 
Colby et a/ 1987, Chee and Whittington 1987. Soteros and Whittington 1988). In 
earlier papers we have focused on the connective constant of a uniform star in a 
slab geometry (in three dimensions) and in a slit geometry (in two dimensions). We 
showed that the connective constant of a uniform star in a slab is identical to that of 
a self-avoiding walk in a slab (Chee and Whitttington 1987) but that the connective 
constant of a star (and, incidently, a polygon) in a slit is strictly less than that of a 
self-avoiding walk in a slit (Soteros and Whittington 1988). 

In this paper we extend these results in two ways. A tree is a brush if and only if 
there is a self-avoiding walk which is a subgraph of the tree and which connects all the 
branch points (the vertices of degree greater than 2 )  of the tree. A uniform brush has 
the same number of edges in each branch. We distinguish different uniform brushes 
by [c!), the ordered set of degrees of the branch points and by n, the number of edges 
in each branch. We shall be concerned with the number of weak embeddings of these 
graphs in subsets of the square and simple cubic lattices. For instance, for the complete 
square lattice, the number of brushes with two branch points, c, = c2 = 3, n = 1, is 
18, and the number with two branch points, c ,  = 3, c2 = 4, n = 1 is 12. A star is the 
special case of a brush with one branch point and a comb is the special case with all 
c, equal to 3. 
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5260 C E Soteros and S G Whittington 

We prove that the connective constant of a uniform brush in Zd is equal to that of 
a self-avoiding walk. 

An L-slab in Z3 is that part of the lattice lying in and between the two planes z = 0 
and 2 = L, and we prove that the connective constant of a uniform brush in this lattice 
subset is equal to that of a self-avoiding walk in this subset. An L-slit in Z' is that 
part of the lattice lying in and between the two lines y = 0 and y = L. In this case we 
prove that the connective constant of a uniform brush in a slit is strictly less than that 
of a self-avoiding walk in a slit. 

We also extend these results to an infinite right prism, i.e. that part of Z3 lying 
in and between the four planes y = 0, y = L , ,  2 = 0 and i = L,. We prove that 
the connective constant of a brush in this lattice subset is strictly less than that of 
a self-avoiding walk in the same subset, and we prove a corresponding result for 
polygons. 

2. Brushes in a slab 

In this section we prove that uniform brushes in a slab in Z3 have the same connective 
constant as self-avoiding walks in the same slab. We first prove that suitably unfolded 
stars in a slab have the same connective constant as walks. Concatenating these stars 
to form brushes gives a lower bound on the connective constant of a brush. An upper 
bound is obtained by connecting walks to form a set of graphs which contains the 
brushes. 

The proofs rely heavily on the unfolding argument of Hammersley and Welsh 
(1962) and on results for the connective constant of walks in wedges (Hammersley 
and Whittington 1985, Whittington 1988). In particular, the proofs will rely on 
concatenating unfolded walks in the wedges, W , ,  . . . , W,, of figure 1 to create unfolded 
stars. Hence we need to define appropriate unfolding operations in these wedges and 
determine the connective constant of unfolded walks in these wedges. 

Figure I .  Projections in rhe YJ' plane of the wedges W I , .  . , , Ws 

Write ( X , , ~ , , Z ~ )  for the coordinates of the ith vertex of a walk having n steps. We 

(2.1) 

where 0 I ;' < x .  When 7 = 0 this is equivalent to the definition of Hammersley and 
Welsh ( I  962). 

say that a walk is unfolded in the y direction if, for all i ,  

?yo + .Yo I ; 'y l  + .Y, I ;'Jll + X I ,  
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Define an ( r ,p ,  L)-wedge, p > r,  as the subset of Z’ bounded by the four planes 
z = 0, 2 = L, y = rx,  y = px, with x 2 0. Choose any point qo = (.xo,yo,zo) which lies 
in the ( q p ,  L)-wedge such that there is at least one infinitely long self-avoiding walk 
in the wedge having this point as origin. Then the following lemma holds. 

Lemma 2.1. Let c i ( r , p , y ,  L,q,), p > r,  be the number of n-step self-avoiding 
walks starting at qo = (xo,yo,zo) confined to an (a,P, L)-wedge, and unfolded in the 7 
direction. Then if (i) r = y = 0, p > 0 or (ii) 0 < r 1, p 2 1, 7 = 1, 

I 1  lim - 7- n-’ log cT(r, p, 7 ,  L, qo) = K(L) (2.2) 

where K(L) 
walks confined to an L-slab, starting at (O,O,zo), for any zo such that 0 I zo I L. 

lim,,+L n-’  logc,(L,zo) and c,,(L,z,j is the number of n-step self-avoiding 

Proof: For r = 7 = 0 the proof is a straightforward extension of the ideas in section 4 
of Hammersley and Whittington (1985) and Whittington (1988). For y = 1 a walk can 
be unfolded by successive reflections of parts of the walk in planes y + .Y = constant. 
Each such reflection gives a walk in the lattice and the reflections are continued until 
equation (2.1) is satisfied. Such walks can be concatenated and have similar properties 
to those with 7 = 0. The remainder of the proof follows that of Whittington (1988). 

We consider a uniform star with f branches each containing n edges, having its 
branch point (vertex of degree f I 5 )  at the point (O,O,z,) ,  0 I zo I L, and write 
(x,,, y,,, z , ] )  for the coordinates of the ith vertex in the j th  branch. The star is unfolded 
in an L-slab if 

( i )  0 I z,, I L 
(ii) xi, 2 0 
(i i i )  there exists k such that xi/ < xni for i # n , j  # k 
(iv) 0 < zni < L. 
We write s,’(f, L,zo) for the number of such unfolded stars. 

Lemrna 2.2. 

ProoJ: We prove equation (2.3) for the case 0 < zo < L. For f < 5 and zo = 0 or 
z0 = L the proof is similar. 

By concatenating f walks of n steps, each lying in an L-slab, such that they have 
common origin (O,O, zo ) ,  we obtain the upper bound 

s,f(f,L,z,j I c,(L,z,)’. (2.4) 

We define five disjoint, translated, (9, @, L)-wedges as follows: 

w, : .Y 2 0 y 2 3 x + 4  O I Z I L  
wz : .Y 2 0 .Y 5 4’ I 2s O I Z l L  
w, : 9 2 4 O I 4 ’ I  i ( x - 4 )  O I Z I L  
w, : .Y 2 0 -2.u I 4’ I -x O I Z I L  
w, : s 2 0 y I -3x -4  O l Z I L .  



5262 C E Soteros and S G Whittington 

In order to create a uniform unfolded star we shall concatenate five walks, one 
in each of the five wedges, and then unfold (in the x direction) the walk (in wk) 
which extends the farthest in the positive x direction. This walk may then extend 
outside W, but the resulting star will be self-avoiding. In fact i t  will be convenient to 
concatenate five walks which are unfolded in their respective wedges so that, after the 
final unfolding of the walk in W,, we can force 0 < znk < L. 

W, is a translated (3, r;, L)-wedge and so a translated and reflected (0, i, L)-wedge. 
Hence the number of n-step walks in W , ,  unfolded along the positive y direction 
and starting at (O,4,z0), c;( W,) is equal to cT(0, f , O ,  L,q,)  where qo = ( O , O , z o ) .  Sim- 
ilarly, the number of n-step walks in W2, . . . ,  W,, unfolded along y = .Y, y = 0, 
y = -.Y, and the negative y direction, respectively, and starting at (1,2.zo + l) ,  (4,0,z0), 
(l,-2,zo - 1 )  and (0,-4,z,), respectively, are given by c, + ( W,) = c;(L2, LL,q1), 
CT(W,) = c;(o, 1/2,0,L,q,), c,'(W,) = c, + ( 1,2, l,L,qz), C" 'cw,) = cT(O, f,O,L,q,), re- 
spectively, with 0 < :, < L, q ,  = (1,2,z0 + 1 )  and q2 = (1,2,z0 - 1). 

I f  we define U , ,  U ? ,  U ,  as unit steps along the positive x, y and 2 directions, and 
ii,, i i 2 ,  ii, as corresponding steps along the negative directions, we can join the vertex 
(O,O,zoj to a vertex in each of these wedges by the following disjoint links: I ,  = U;,  

We now concatenate the links 1 , ,  . . . , If and f suitably unfolded walks, each of n - 7 
edges, in the wedges W,,. . ., Wf. The resulting graphs are uniform stars with n - 3 
edges in each of the f branches. Choose the wedge ( k ,  say) which contains the vertex 
having maximum .Y coordinate amongst all the vertices in the uniform star. In case of 
ambiguity choose k to be first in the sequence 3,2,4, 1,5. Unfold the walk in wk in 
the positive .Y direction (by reflections through planes x = constant) and add to this 
unfolded walk the three steps U: if the z coordinate of the last vertex is neither 0 nor L, 
u , U , u ,  if the 2 coordinate is L and u l u 3 u ,  if the 2 coordinate is 0. The walk in W3 can 
always be extended by the three steps U ; ,  the walk in W, ( W,) can always be extended 
by the three steps U ;  ( E ; )  and the walk in W2 ( W,) can be always extended by adding 
one of the four subwalks u,u2u3,  u ,u2i i3 ,  u 2 u I u 3 .  u2ul i i3  (u l i i2u3 ,  u1iizii3, i i2uIu3 ,  ii2uiii,). 
Extend the walks in each of the wedges W,, j # k ,  in this way. The resulting star with 
n edges in each branch has a unique rightmost vertex and is therefore unfolded. Hence 

l2 = U,UfUI, I, = U?,  I ,  = ii ,iiju,, I ,  = ii;. 

E 
J 

s i ( f .  L, zo )  2 exp(O(\/;;)) n cl-,( W,j (2.5) 

where the exp(O(&)) term comes from the final unfolding in the x direction. Equation 
(2.5) together with lemma (2.1) and equation (2.4) gives equation (2.3). 

An immediate corollary of this lemma is that uniform stars in a semi-infinite L-slab, 
[ ( . ~ , y , z )  : .Y 2 0,O I : I L ) ,  with their branch point in the plane x = 0 have connective 
constant K( L ) .  

We now prove the main result of this section. Let b,,(t, c l ,  e?,. . . , e,, Lj be the number 
of uniform brushes in an L-slab having t branch points, of vertex degree r l ,  c2,. . . , cf, 
and 11 edges in each branch. Two brushes are counted as distinct if they cannot be 
superimposed by translation. 

/ = I  

Theorem 2.1. For any t ,  e , , .  . . , r r ,  such that e, I 6 for all i, 
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Proof: The number of branches in the brush is f = 1 - t + E:=, e,. We obtain an  
upper bound on h,,(t. c l ,  e?,. . . , e r ,  L )  by a suitable concatenation of f n-step walks in 
an  L-slab to give 

where c,(L) is the number of n-step self-avoiding walks in an  L-slab. Two walks are 
counted as distinct if they cannot be superimposed by translation. Note that limn+x 
, - I  logc,(L) = K ( L ) .  To obtain a lower bound we concatenate a walk unfolded in the 
x direction in an L-slab and a sequence o f t  uniform stars, each unfolded in an  L-slab, 
having c I  - 1 ,  - I , .  . . , c, - 1 branches. With the first unfolded star fixed with its 
branch point at (O,O, 1 )  we add the edge (0,O. l)-(-l,O, 1 )  and an (n - 1)-step unfolded 
walk, starting at (--l ,O, 1 )  and reflected in the plane x = -1. The concatenation of the 
kth and (k  + 1)th stars is accomplished by identifying the rightmost vertex of the kth 
unfolded star and the branch point of the (k + 1)th unfolded star. The resulting graphs 
are uniform brushes in an L-slab and 

where = 1 and z 2 .  z 3 , .  . . , i, are fixed by the concatenation and where cT(L, 1) is the 
number of walks unfolded in the s direction in an L-slab and starting at  the point 
(O,O, 1 ). This bound, together with equation ( 2 . 7 ) ,  proves the theorem. 

A similar construction for the complete lattice establishes that uniform brushes 
have the same connective constant as walks in Z3, and a similar argument for the 
complete lattice works in Zd. 

3. Brushes in a slit 

In this section we investigate the connective constant of uniform brushes in an  L-slit 
in Z'. The main result is that the connective constant of a brush in an L-slit is strictly 
less than that of a self-avoiding walk in an L-slit. 

We now write h,,(t,  o l ,  G?, . . . , c l ,  L )  for the number of uniform brushes in an  L-slit, 
having t branch points, of vertex degree e , ,  e?, .  . . , e,, and n edges in each branch. Two 
brushes are counted as distinct if they cannot be superimposed by translation. 

We have been unable to prove the existence of the limit lim,,,, [n( 1 - t +E:=, e,)]-' 
log b,,(t. c l ,  e?, . . . , c,, L )  and our results take the form of bounds on the corresponding 
limiting infimum and limiting supremum. We now write c,(L, j0)  for the number of 
n-step self-avoiding walks confined to an  L-slit, starting at  (0, yo), for any yo such that 
0 I yo I L. c i ( L , y o )  is the number of n-step self-avoiding walks confined to an L-slit 
and unfolded in the s direction, starting at (0, yo) ,  for any yo such that 0 I yo I L. c,(L) 
is the number of n-step self-avoiding walks confined to an L-slit such that two walks 
are counted as distinct if  they cannot be superimposed by translation. The three limits, 
lim,,,, ,-I log c , , (L ,yo) ,  limn,% n-l log c l ( L ,  yo) and limn,x n-I log c,(L), are known to 
exist and to be equal. We define ti(L) to be the value of these limits. 
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Theorem 3.1. For any t ,  c l , .  . . , U , ,  such that c, I 4 for all i, 

t + l  f - t - 1  
11-y. f f h-(L - 1 )  < h-(L) (3.1) lim sup(nf )-I log b,,(t, VI, r 2 , .  . . , c,. L )  2 ---h-(L) + 

where f = 1 - t + r , .  

Proqf: We define the top (bottom) vertex of a brush as the vertex having largest 
(smallest) J’ coordinate in the subset of vertices of the brush having largest (smallest) 
.Y coordinate. Let the top vertex have coordinates (xt,yt) and the bottom vertex have 
coordinates (.xh.yb). The brush lies in, or in the boundary of, the rectangle R with 
vertices (xh,  -;), (xh, L + A ) ,  ( . Y ~ ,  L + 4). (xt .  -$ ) .  There is a self-avoiding walk w, which 
is a subgraph-of the union of at mist  t + 1 branches of the brush, from (.xb,yb) to 
(xt,yt), and there is a subwalk (M.’) of w which has two vertices of degree one in ?R, the 
boundary of R,  but no edge in ?R. c‘rc.’ is properly embedded in ?R and R - w’ is not 
conneLted since \vr separates R into two components. Hence there are at least f - t - 1 
interior branches of the brush, each of which have all their edges in a component of 
R - ) .V I .  All points on the line y = L between ( .Yh ,L)  and ( x , ,L )  lie above or on w’, 
so that one of the components of R - M” lies entirely below the line y = L. Similarly, 
the other component of R - bv’ lies entirely above the line y = 0. Therefore all, except 
possibly the first step, of each interior branch must lie entirely in a slit of width L -  1. 
Hence 

where m, = n or n - 1 .  Taking logarithms, dividing by f n and letting n + x proves the 
theorem. 

There are several approaches to the derivation of lower bounds to the number of 

We first establish an inequality between the number of uniform combs and the 
brushes in an L-slit and we illustrate some of these in the following lemmas. 

number of polygons in an L-slit, p , , ( L ) .  The corinective constant 

is known to exist (Soteros and Whittington 1988) and numerical values of K,,(L) are 
available for small L (Klein 1980). 

Leniniu 3.1. 
L-slit with t teeth and n edges in each of the f = 2t + 1 branches. Then 

Let rl l ( t ,  L) = b,,(t. 3,3,. . . , 3 ,  L )  be the number of uniform combs in an 

Proof: We define an L-pad to be a rectangular polygon of 2 L + 2  edges, one edge 
in each of the lines y = 0 and y = L. We concatenate an L-pad and a polygon in 
an L-slit with 2n  - 2L - 2 edges by translating the polygon so that its P m o m  vertex 
is one lattice space to the right of the L-pad. Delete the edge (.Yb,)’b)-(.Yb,yb + 1) in 
the polygon and the edge ( x h  - l ,yb)-(xb - l , y b  + 1) in the L-pad and add the edges 
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I 

(xb - 1, yb)-(xb, yb)  and ( x b  - 1, yb + I)-(xb, y b  + 1) .  We call this a padded polygon with 
2n edges. 

We concatenate a walk unfolded in the x direction in an L-slit and a sequence 
of t padded polygons, as follows. We concatenate an ( n  - ])-step self-avoiding walk, 
starting at the origin, confined to an L-slit and unfolded in the x direction, and a 
padded polygon with 2n edges, by adding a step in the x direction joining the end 
point of the walk to the pad. This creates the first branch point of degree 3. The 
concatenation of the kth and ( k  + 1)th padded polygons proceeds as follows. Identify 
the vertex, (.Y,,,J,,), which divides the kth padded polygon into two n-step walks, M', and 
U'?, starting at the kth branch point. If wI (wz) contains the top vertex of the padded 
polygon, remove the last step of w I  (M'?) and unfold wI (\oz) in the positive x direction; 
in case of ambiguity (i.e. (x1, yI)  = (.Y~,, J,,)) remove the edge (x,,, y,,) -(s,,, y,, - 1) and 
unfold the walk containing the vertex (.x,,,yn - 1) in the positive x direction. Add a 
step in the positive x direction to the unfolded walk and join its endpoint to the pad 
of the ( k  + 1)th padded polygon to create the (k + 1)th branch point of degree 3. See 
figure 2 for an example. The resulting graph is a uniform comb in an L-slit and hence 

U 

which with equation (3.3) gives equation (3.4). 

Figure 2. ( a )  shows a 19-step unfolded walk and a sequence of three 40-step padded 
polygons. These can be concatenated as in ( h )  to give a uniform comb with 20 steps in 
each branch. 

For the subset of the brushes in which each brush contains at least one vertex 
of degree 4 (i.e. the brush is not a comb) we can concatenate in a similar fashion a 
polygon and a sequence of uniform stars and padded polygons. 

Consider a uniform star with f branches each containing n edges, having its branch 
point at (O,yo), 0 I yo I L and write ( . ~ , ~ , j ' , , )  for the coordinates of the ith vertex in 
the j th  branch. Replace zrI  by yl, in the definition of a star unfolded in an L-slab to 
obtain the definition of a 3-star unfolded in art L-slit and let s,f(3, L, yo) be the number 
of such unfolded stars. 

Lemma 3.2. For any t ,  r , . .  . . . ct. such that I', I 4 for all i and assuming there exists m 
such that r,,, = 4 :  

where nk is the number of vertices of degree k in the brush. 
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Proof: The proof follows by a straightforward concatenation argument which we sketch 
without giving details. The first vertex of degree 4 in the ordered set [ c l ]  is obtained by 
concatenating a (2n  - 2)-step polygon confined to an L-slit and a (2n - 2)-step padded 
polygon. This is cut and unfolded (to the right) in a similar way to that described in 
lemma 3.1 and concatenated with a 2n-step padded polygon or an  unfolded 3-star with 
ti steps in each branch, according to whether the next vertex is of degree 3 or  4. This 
is continued (to the right) to construct all branch points later in the list i t . , )  and then 
(to the left) to construct branch points earlier in the list. See figure 3 for an example. 

Figure 3. ( a  j A 40-step padded polygon. a 38-step polygon, a 38-step padded polygon and 
an unfolded 3-star with 20 steps in each arm. These can be concatenated as in ( b ) ,  starting 
with the two 38-step polygons in the middle. to give a brush with L'I = 3, 1 . 2  = c3 = 4. 

Note that equations (3.5) and (3.6) with t = 1 reduce to the bounds obtained for 
3-stars and 4-stars, respectively, in Soteros and Whittington (1 988). 

Lemma 3.3. For any t ,  c l , .  . . , ct, such that c, 5 4 for all i, 

L-z lim lim 11-x inf(nf)-I Iogb,(t. r I ? .  . .. c , , ~ )  = K .  (3.7) 

Proof: The strategy is to obtain a lower bound for s:(3, L, yo) in terms of walks and thus 
obtain a lower bound for lim inf,,,, (nf ) - '  log b,,(t, c l , .  . . , rt ,  L )  using equation (3.6). 

We divide the slit of width L into three sub-slits of width L(L - 1)/3J. L(L - 1)/3], 
L-2-2L(L- 1)/3]. such that an  adjacent pair of slits is separated by one lattice space. 
(LxJ denotes the greatest integer smaller than or equal to x.) By considering unfolded 
walks in each of these three slits, and concatenating them to form an unfolded 3-star 
one obtains 

l iminf (3n) - ' logs~(3 .L .y0)  11-x 2 ~ K ( L ( L -  1)/3]) + ; t i ( L - 2 - 2 L ( L -  1)/3J). (3.8) 
Then equation (3.8) together with equations (3.3) and (3.6) gives 
lim inf(nf)-l log b,(t, c , ,  . . . , c,, L )  

11-+7. 

2 ((2n3 + 4) / f )x0(L)  + ((3n4 - 3 ) / f ) ( i ~ ( l ( L  - 1)/31) 

+ iti(L - 2 - 2L(L - 1)/3]) (3.9) 
when n4 2 I .  By concatenating pairs of walks in slits of width [ ( L  - 11/21 to form 
polygons in a slit of width L i t  is straightforward to obtain a lower bound on tio(L) in 
terms of K ( [ ( L  - l) /2])  from which i t  follows that 

lim K ~ ( L )  = K (3.10) L-7.  

and so 

L-7. lim lim 11-x inf(nf)- '  log b,(t, r 1 , .  . . , rt, L )  2 ( (2n,  + 3n4 + l ) / f ) t i  = ti .  (3.11) 

We obtain a similar result from equation (3.4) when n4 = 0. Then using equation (3.1) 
we have 

(3.12) Iim Iim inf(tif)- '  log h,,(t, r l . .  . . , c t ,  L )  = K. 
L - z  11-7 

A similar result applies to the L + x limit of the n + x. limiting supremum. 
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4. Brushes in a prism 

In this section we investigate the connective constant of walks, polygons and brushes 
in an infinite right-rectangular prism. An (L,,L2)-prism is that part of Z3 lying in 
and between the four planes y = 0, y = L , .  z = 0, z = L2. The main results are 
that the connective constant of a brush and a polygon are strictly less than that of a 
self-avoiding walk in an ( L , ,  LJ-prism. 

We now write c, ,(L, ,  L 2 ) ,  p, , (L , ,  L J ,  h,,(r. r , , .  . . , ct, L , ,  L2) ,  respectively for the num- 
ber of n-step self-avoiding walks, n-step polygons and uniform brushes having t 
branch points, of vertex degree r , , .  ..,cl, and n edges in each branch, confined to 
an (L,,L,)-prism. Two walks, polygons or brushes are counted as distinct if they 
cannot be superimposed by translation. Following the proof for walks in Z3 (Ham- 
mersley 1957) the limit lim,,,, n-' logc,,(L,,L,) can be shown to exist and is defined 
to be t i (L l ,L2 ) .  Two polygons can be concatenated via two walks (with lengths 
less than 2(L,  + I)(Lz + I ) )  contained in a pad with dimensions 1 x L ,  x L,  and 
an argument similar to that in Soteros and Whittington (1988) shows that the con- 
nective constant t io(LI ,L,)  = As in the case of a 
brush in an L-slit, however, we have been unable to prove the existence of the limit 
lim,,+x(af)-' logb,(t,t., ,..., c,,L,,L,) for f = l /[n(l  -t+C;=, ci)] and our results for 
brushes again take the form of bounds on the corresponding limiting infimum and 
limiting supremum. 

In order to prove our main results we need an extension of Kesten's 'pattern 
theorem'. For this purpose we define a X,,-pattern, for any p > 0, to be any self- 
avoiding walk LO for which there exists a self-avoiding walk U * ,  such that o occurs 
in CO' and (I)' begins at (O,O,O),  ends at (p ,O .O)  (or begins at (p ,O,O),  ends at (O,O,O)) 
and is completely contained within the box DIj  = {(.x,y,:) E Z3 : 0 I x I p,O I y I 
L,,O I z I L2i .  The required extension of theorem 1 of Kesten (1963) is as follows. 

n-'logp,,(L,,L,) exists. 

Lemma 4.1. For any /r > 0, let P be a Xic pattern, other than the unit step U,, then 

JI - -X  lim 17- I  logc, , (P,L, ,L2)  <  ti(^,.^:) (4.1) 

where c, , (P,L, ,L,)  is the number of n-step self-avoiding walks in an (L,,L,)-prism 
which do  not contain the pattern P. These walks are counted as distinct if they cannot 
be superimposed by translation. 

Proqf: We prove first that the limit lim,,,, ti-' logc,,(l',L,,L,) exists. Disconnecting a 
walk cannot form a pattern P .  Hence, C, ,+~(P,  L,,L,) I c,,(P, L , ,  L,)ck(P,  L, ,  L,) and 
since 1 I c, , (P,  L , ,  L2) ' In ,  the limit 

K ( P ,  L , ,  L,) z lim n-I log c , , ( P ,  L , ,  L ~ )  (4.2) 
11-7 

exists and is non-negative. 
We say the event E occurs at the rth step of a walk w if for some x with 

-p I x I 0 all points of the box D,j(r,z) = i ( s , y , z )  E Z- : x I x - x r ( o )  I p + x , O  I 
y I L,,O I z I L21 are occupied by o, where ,u,(w) denotes the .Y coordinate of the 
j t h  step of o. Following the proof of lemma 5 of Kesten (1963) it can be shown 
that limn,T n-' logc, ,(E,L,,L,)  < t i (L I ,L2) ,  where c, ,(E,L,,L,)  is the number of n-step 
walks in which E never occurs. Hence, the event E occurs in almost all (i.e. all except 

7 
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exponentially few) walks in an (L,.L,)-prism. Following a proof similar to that of 
lemma 4 of Kesten (1963), it can be shown that E occurs in almost all walks of length 
n.  n large, at least en times for some E .  Whenever the event E occurs in a walk it 
can be replaced by the pattern P .  This is the essence of the proof of theorem 1 of 
Kesten (1963) and a similar proof applies in this case. In fact it is possible to show 
that there exists E > 0 such that lim sup,,+,- ti-' log c n ( w  P ,  L , ,  L,) < K ( L , ,  L2 )  where 
c,,(en. P ,  L , ,  L?)  is the number of walks in which P occurs at most en times. 

Theorem 4.1 

K"(LI.L?) < K(L , ,L?) .  (4.3) 

Proof. Let to, be the walk which completely fills the set I ( 0 , y . z )  E Z3 : 0 5 y 5 
L,,O I 2 5 L2)  so that the walk starts at ( O , O , O )  and its position after the j t h  step 
is (x,,y,,z,) = (0, L / ( L ?  + 1 ) ] , ~ / 2  + (-I)!-' ' L l + l ' j  (--L2/2 + j  - ( L 2  + l)lj/(L2 + 1)J)) 
for 0 I j 5 ( L ,  + i ) L ,  + L , .  The walk after ( L ,  + 1)L2 + L ,  steps ends at the vertex 
(0,Ll,(L2/2)(i +(-l)Li)). If  L ,  is odd, add to w ,  the step to ( l , L , , O )  and consecutively 
the steps to ( l , L ,  - j , O )  for j = I , .  . . , L , .  If L,  is even, add to w, the step to (1, L , , L z ) ,  
consecutively the steps to (1 ,  L, .  L ,  - k ) ,  k = 1,.  . . , L?, and consecutively the steps to 
( l , L l  - j , O ) ,  j = 1 , . . . ,  L, .  In both these cases add the step from ( - i , O , O )  to (O,O,O) to 
create a X 2  pattern starting at ( - - l ,O,O)  and ending at ( l , O , O )  which we call thejilling 
patterrz for an ( L l .  L,)-prism. See the sketches in figure 4. 

Figure 4. ( a )  and ( h )  shou the filling pattern in the case that L IS  odd and even. respectively. 

A polygon in an (L,,L2)-prism can be divided into two subwalks which start at the 
bottom vertex ( . Y ~ . J . ~ , ~ ~ )  and end at the top vertex (.xl,yl,zt). (Top and bottom vertices 
in a prism can be defined in a way similar to the definition given for an L-slit.) Since 
these two walks are disjoint apart from their endpoints neither of them can contain 
the filling pattern. Therefore 

(4.4) 

where P is the filling pattern. Then equation (4.4) and lemma 4.1 gives the theorem. 

Theorern 4.2.  For any t ,  L , , .  . ., cl. such that c, 4 6 for all i ,  

Proof: For any brush, there is a self-avoiding walk w ,  which is a subgraph of at most 
t + 1 branches of the brush, starting from ( x b T y b . Z b )  and ending at (x l ,y l ,z t ) .  There 
are at least f - t - 1 interior branches of the brush which have no edges in o. If one 
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of these interior branches contains the filling pattern then this branch may intersect w 
at the branch point vertex and will intersect c?) in at least one other vertex which will 
be a part of the filling pattern. Thus no interior branch can contain the filling pattern 
and therefore 

b,,(t.',,. . . , c t , L 1 , L J  I C,,(L, ,Lz)r+ic , , (P,L1,L~)f-T-i  (4.6) 
where P is the filling pattern. Lemma 4.1 and equation (4.6) together give the theorem. 
Putting t= l  in equation (4.5) gives a bound for stars, and putting cl = c2 = . . . = U, = 3 
in equation (4.5) gives a bound for combs. 

5. Discussion 

We have considered the effect of various geometrical constraints (confinement to a slab, 
slit or prism) on the connective constant of uniform brushes (and stars and combs) 
weakly embeddable in a lattice. In a slab geometry the connective constant of a brush 
is identical to that of a self-avoiding walk in a slab. In a slit or prism the connective 
constant of a brush is less than that of a walk, which means that a brush loses more 
configurational entropy than a walk when confined in this way. We have also confirmed 
and extended an observation by Klein (1980) that a polygon in a prism has a lower 
connective constant than a walk in a prism. 

Perhaps the most interesting aspect of these results is the difference in behaviour for 
a pseudo-two-dimensional constraint (a slab) and a pseudo-one-dimensional constraint 
(a slit o r  prism). Our proof for the slit case makes use of a version of the Jordan 
curve theorem which emphasises the essential topological distinction between IR' and 
IR'. This proof does not work for a prism since a closed curve does not divide a prism 
regarded as a subset of R3. However, since we are concerned with subsets of Z3, it is 
possible to divide a prism in Z3 by an  appropriately defined filling pattern. This is the 
essence of the proof presented in section 4. A similar proof can be constructed for Z2. 

Finally we point out several open questions. It would be useful and interesting to 
supply a proof of the existence (or otherwise!) of the connective constant for uniform 
brushes in a slit or prism. There are also no numerical estimates of this quantity and 
we d o  not know how good our lower bounds are. In particular, the bound presented 
in lemma 3.1 for uniform combs in a slit of width L ,  combined with Klein's estimates 
for K ( L )  and K"(L)  gives numerical bounds on the connective constant of combs and 
these are given in table 1. 

Table 1. Lower bounds on the connectite constant of combs in a slit 

L t = 2  r = 3  t = 4  

2 0.4071 0.3898 0.3802 
3 0.5631 0.5507 0.5439 
4 0.6554 0.6459 0.6407 

I t  would be interesting to compare this with numerical results from e.g. Monte Carlo 
or  transfer matrix calculations. Certainly this lower bound is exact when L = 1. 

The same bound works for a comb in a prism and, using Klein's results for ~ ( 1 , l )  
and K"( 1 ,  l ) ,  we obtain 0.6579 as a lower bound on the connective constant for uniform 
combs with two teeth in the ( 1 .  1)-prism. Similar numerical bounds can easily be written 
down for larger values o f t .  
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